organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-3-thioureidothiourea monohydrate

Weidong Sun,^a Jin Yao,^b Lifei Bai^c and Xiaoming Wang^d*

^aDepartment of Chemistry, Chifeng College, Chifeng 024001, People's Republic of China, ^bCollege of Chemistry, Nanjing University, Hankou Road, Nanjing,210093, People's Republic of China, ^cJiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China, and ^dState Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Hankou Road, Nanjing,210093, People's Republic of China

Correspondence e-mail: wangxm07@nju.edu.cn

Received 15 December 2008; accepted 24 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.141; data-to-parameter ratio = 12.2.

In the title compound, $C_{16}H_{24}N_4O_9S_2\cdot H_2O$, the hexopyranosyl ring adopts a chair conformation (⁴C₁), and the five substituents are in equatorial positions. In the crystal structure, extensive $O-H\cdots O$, $N-H\cdots S$ and $N-H\cdots O$ hydrogen bonding leads to the formation of a three-dimensional network.

Related literature

For cycloaddition and nucleophilic addition, see: Pearson *et al.* (2003); Reitz *et al.* (1989). For the crystal structure of glycosyl isothiosyanate, see: Jiang *et al.* (2003). For the crystal structures of glycosyl isothiosyanate methanol and ethanol derivatives, see: Zhang *et al.* (2001).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{24}N_4O_9S_2\cdot H_2O\\ M_r = 498.53\\ \text{Monoclinic, } C2\\ a = 22.286 \ (2) \ \text{\AA}\\ b = 7.2005 \ (7) \ \text{\AA} \end{array}$

Mo $K\alpha$ radiation

 $\mu = 0.28 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Bruker SMART CCD area-detector	3525 independent reflections
diffractometer	3021 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.036$
5322 measured reflections	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.055 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.141 & \mbox{$\Delta\rho_{max}$} = 0.42 \mbox{ e \AA^{-3}} \\ S = 1.07 & \mbox{$\Delta\rho_{min}$} = -0.27 \mbox{ e \AA^{-3}} \\ 3525 \mbox{ reflections} & \mbox{$Absolute structure: Flack (1983),} \\ 289 \mbox{ parameters} & 1229 \mbox{ Friedel pairs} \\ 7 \mbox{ restraints} & \mbox{Flack parameter: } -0.16 \mbox{ (12)} \end{array}$

 $0.45 \times 0.22 \times 0.22 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H10\cdots O5^{i}$	0.87	2.64	3.382 (11)	146
$O1W - H20 \cdot \cdot \cdot O9^{ii}$	0.87	2.56	3.181 (9)	129
$N1 - H1A \cdot \cdot \cdot S2^{iii}$	0.86	2.62	3.400 (4)	151
$N2-H2A\cdots O3^{iv}$	0.86	2.09	2.856 (5)	147
$N3-H3A\cdotsO1W^{v}$	0.86	2.13	2.973 (9)	167
$N4 - H4B \cdots O1W^{vi}$	0.86	2.43	3.244 (9)	159
$N4-H4C\cdotsO1^{iii}$	0.86	2.49	3.323 (5)	164

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) x - 1, y, z; (iii) -x + 2, y, -z + 1; (iv) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (v) x + 1, y, z; (vi) x + 1, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The project was supported by the National Natural Science Foundation of China (No. 30701041) and the Scientific Research Project of Inner Mongolia Autonomous Region Colleges and Universities (No. NJZY08149).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2088).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jiang, F. F., Wen, L. R., Li, X. M., Zhang, S. S. & Jiao, K. (2003). Chem. J. Chin. Univ. 24, 58–60.

Pearson, M. S. M., Robin, A., Bourgougnon, N., Meslin, J. C. & Deniaud, D. (2003). J. Org. Chem. 68, 8583–8587.

Reitz, A. B., Tuman, R. W., Marchione, C. S., Jordan, A. D., Bowden, C. R. & Maryanoff, B. E. (1989). J. Med. Chem. 32, 2110–2116.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, S.-S., Wang, Z.-W., Li, M., Jiao, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2001). Acta Cryst. C57, 566–568.

Acta Cryst. (2009). E65, o242 [doi:10.1107/S1600536808043833]

1-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-3-thioureidothiourea monohydrate

W. Sun, J. Yao, L. Bai and X. Wang

Comment

Over the past decade, many organic chemists have been engaged in the synthesis of glycosyl isothiosyanates and its derivatives. These compound are versatile reagents in organic synthesis and easily undergo many important reactions, such as cycloaddition (Pearson *et al.*, 2003) and nucleophilic addition (Reitz *et al.*, 1989). Recently, the crystal structures of glycosyl isothiosyanate (Jiang *et al.*, 2003) and the methanol and ethanol derivatives (Zhang *et al.*, 2001) have been reported. However, other derivatives of glycosyl isothiosyanate are still rare. Here we report on the synthesis of a new thiosemicarbazide derivative of glycosyl isothiosyanate, 2,3,4,6-tetra-*O*-acetyl- β -*D*-glucopyranosyl dithiourea, (I).

The molecular structure of compound (I) is illustrated in Fig. 1. The hexopyranosyl ring adopts a chair conformation $({}^{4}C_{1})$, and the four substituents are in equatorial positions.

In the crystal extensive O—H···O, N—H···S and N—H···O hydrogen bonding (Table 1) leads to the formation of a three-dimensional network.

Experimental

Compound (I) was prepared by refluxing together equimolar amounts of β -*D*-2,3,4,6-tetra-*O*- acetyl-glucopyranosyl isothiocyanate and thiosemicarbazide. After cooling to room temperature, water was added to the mixture and compound (I) was isolated as a white solid. Crystals, suitable for X-ray analysis, were grown from an ethyl acetate and acetonitrile (1:1 / v:v) solution by slow evaporation at room temperature.

Refinement

The compound has a known chiral center [the Flack parameter is -0.16 (12) (Flack, 1983)], and for this reason the Friedel pairs were not merged. The water H-atoms were located in the difference Fourier maps and refined with distance restraintes, O-H = 0.87 (2) Å. The N- and C-bound H-atoms were placed in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.96 - 0.98 Å, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ (parent N- or C-atom).

Figures

Fig. 1. A view of the molecular structure of compound (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.

1-(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)-3-thioureidothiourea monohydrate

Crystal data

C ₁₆ H ₂₄ N ₄ O ₉ S ₂ ·H ₂ O	$F_{000} = 1048$
$M_r = 498.53$	$D_{\rm x} = 1.384 {\rm Mg m}^{-3}$
Monoclinic, C2	Melting point: not measured K
Hall symbol: C 2y	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 22.286 (2) Å	Cell parameters from 7141 reflections
b = 7.2005 (7) Å	$\theta = 1.4 - 27.7^{\circ}$
c = 15.8772 (17) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 110.119 \ (2)^{\circ}$	T = 293 (2) K
$V = 2392.3 (4) \text{ Å}^3$	Block, colorless
Z = 4	$0.45 \times 0.22 \times 0.22 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3021 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.036$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.4^{\circ}$
ϕ scans, and ω scans	$h = -25 \rightarrow 26$
Absorption correction: none	$k = -8 \longrightarrow 8$
6322 measured reflections	$l = -18 \rightarrow 11$
3525 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0808P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.141$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
3525 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
289 parameters	Extinction correction: none
7 restraints	Absolute structure: Flack (1983), 1229 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.16 (12)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1W	0.0457 (4)	0.2431 (10)	0.3624 (6)	0.193 (3)
H10	0.0696	0.2068	0.3324	0.232*
H20	0.0081	0.1989	0.3326	0.232*
S1	1.01347 (6)	0.9344 (2)	0.17559 (9)	0.0605 (4)
S2	1.09337 (7)	0.5527 (2)	0.56716 (9)	0.0720 (5)
01	0.87014 (12)	0.9697 (4)	0.28332 (19)	0.0433 (7)
02	0.79211 (13)	1.1140 (5)	0.37749 (19)	0.0493 (8)
03	0.69458 (16)	1.2284 (7)	0.3502 (3)	0.0796 (12)
O4	0.69663 (12)	0.9277 (5)	0.18084 (19)	0.0467 (7)
05	0.67103 (18)	0.7887 (8)	0.2901 (3)	0.0880 (14)
O6	0.73828 (13)	0.5785 (4)	0.14481 (18)	0.0455 (7)
07	0.71021 (18)	0.5906 (6)	-0.0050 (2)	0.0732 (11)
08	0.86480 (13)	0.5944 (4)	0.12682 (18)	0.0464 (7)
09	0.9131 (2)	0.3601 (6)	0.2159 (3)	0.0902 (14)
N1	0.95480 (15)	0.7892 (5)	0.2819 (2)	0.0427 (9)
H1A	0.9581	0.7239	0.3287	0.051*
N2	1.06247 (16)	0.7629 (6)	0.3289 (2)	0.0490 (10)
H2A	1.0987	0.7961	0.3256	0.059*
N3	1.06233 (17)	0.6483 (6)	0.3986 (2)	0.0496 (10)
H3A	1.0510	0.5342	0.3874	0.060*
N4	1.0852 (2)	0.8905 (7)	0.4975 (3)	0.0695 (13)
H4B	1.0779	0.9645	0.4526	0.083*
H4C	1.0960	0.9345	0.5510	0.083*
C1	0.89174 (18)	0.8500 (6)	0.2278 (3)	0.0396 (10)
H1B	0.8940	0.9195	0.1759	0.047*
C2	0.84790 (19)	0.6840 (6)	0.1959 (3)	0.0387 (10)
H2B	0.8538	0.5977	0.2459	0.046*
C3	0.77758 (18)	0.7409 (6)	0.1562 (3)	0.0387 (10)
H3B	0.7693	0.8028	0.0983	0.046*
C4	0.76213 (18)	0.8694 (6)	0.2203 (3)	0.0396 (10)
H4A	0.7681	0.8044	0.2768	0.047*
C5	0.8067 (2)	1.0374 (6)	0.2378 (3)	0.0423 (10)
H5A	0.8048	1.0902	0.1800	0.051*

C6	0.7926 (2)	1.1884 (7)	0.2936 (3)	0.0487 (11)
H6A	0.8249	1.2848	0.3050	0.058*
H6B	0.7514	1.2436	0.2612	0.058*
C7	0.7401 (3)	1.1452 (8)	0.3977 (4)	0.0586 (13)
C8	0.7464 (4)	1.0653 (12)	0.4877 (5)	0.102 (2)
H8A	0.7080	1.0891	0.5004	0.153*
H8B	0.7820	1.1220	0.5331	0.153*
H8C	0.7532	0.9337	0.4872	0.153*
C9	0.6553 (2)	0.8752 (8)	0.2213 (4)	0.0534 (12)
C10	0.5887 (2)	0.9374 (11)	0.1689 (4)	0.0745 (16)
H10A	0.5601	0.8955	0.1984	0.112*
H10B	0.5758	0.8859	0.1096	0.112*
H10C	0.5874	1.0705	0.1653	0.112*
C11	0.7051 (2)	0.5239 (7)	0.0609 (3)	0.0499 (12)
C12	0.6616 (3)	0.3661 (9)	0.0615 (4)	0.0735 (17)
H12A	0.6389	0.3273	0.0011	0.110*
H12B	0.6316	0.4054	0.0892	0.110*
H12C	0.6864	0.2642	0.0948	0.110*
C13	0.8985 (2)	0.4365 (7)	0.1448 (3)	0.0495 (11)
C14	0.9150 (2)	0.3741 (8)	0.0673 (4)	0.0643 (14)
H14A	0.9387	0.2602	0.0819	0.096*
H14B	0.9405	0.4672	0.0523	0.096*
H14C	0.8765	0.3543	0.0170	0.096*
C15	1.00857 (19)	0.8254 (6)	0.2658 (3)	0.0418 (10)
C16	1.0796 (2)	0.7105 (7)	0.4844 (3)	0.0495 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1W	0.265 (7)	0.099 (4)	0.166 (5)	0.007 (5)	0.012 (5)	-0.014 (4)
S1	0.0520 (7)	0.0731 (9)	0.0629 (8)	0.0127 (7)	0.0280 (6)	0.0215 (7)
S2	0.0840 (10)	0.0872 (11)	0.0403 (7)	0.0242 (8)	0.0154 (6)	0.0036 (7)
O1	0.0333 (14)	0.0484 (18)	0.0460 (17)	-0.0008 (13)	0.0109 (13)	-0.0055 (14)
O2	0.0468 (17)	0.053 (2)	0.0451 (18)	0.0115 (15)	0.0115 (14)	-0.0022 (15)
O3	0.050 (2)	0.104 (3)	0.088 (3)	0.024 (2)	0.029 (2)	0.003 (3)
O4	0.0344 (14)	0.0564 (19)	0.0471 (17)	0.0005 (15)	0.0112 (13)	-0.0011 (16)
O5	0.062 (2)	0.121 (4)	0.089 (3)	-0.011 (2)	0.036 (2)	0.022 (3)
O6	0.0445 (16)	0.0522 (19)	0.0344 (15)	-0.0082 (15)	0.0066 (13)	-0.0036 (14)
O7	0.092 (3)	0.079 (3)	0.0369 (19)	-0.017 (2)	0.0069 (18)	-0.0039 (19)
O8	0.0526 (17)	0.0488 (18)	0.0352 (15)	0.0105 (16)	0.0118 (13)	-0.0008 (14)
O9	0.132 (4)	0.073 (3)	0.081 (3)	0.047 (3)	0.056 (3)	0.023 (2)
N1	0.0352 (18)	0.051 (2)	0.041 (2)	0.0027 (17)	0.0117 (15)	0.0089 (17)
N2	0.0342 (19)	0.069 (3)	0.044 (2)	0.0034 (18)	0.0148 (17)	0.008 (2)
N3	0.046 (2)	0.052 (2)	0.040 (2)	0.0041 (18)	0.0019 (17)	-0.0040 (18)
N4	0.079 (3)	0.073 (3)	0.051 (3)	-0.007 (2)	0.016 (2)	-0.015 (2)
C1	0.038 (2)	0.042 (2)	0.039 (2)	0.0045 (19)	0.0128 (18)	0.0030 (19)
C2	0.041 (2)	0.047 (2)	0.028 (2)	0.0074 (19)	0.0111 (18)	0.0022 (18)
C3	0.036 (2)	0.044 (2)	0.033 (2)	-0.001 (2)	0.0078 (17)	0.0021 (19)

C4	0.031 (2)	0.051 (3)	0.035 (2)	0.0046 (19)	0.0101 (17)	0.0036 (19)
C5	0.042 (2)	0.042 (2)	0.041 (2)	0.001 (2)	0.0108 (19)	0.000 (2)
C6	0.049 (3)	0.041 (3)	0.056 (3)	-0.004 (2)	0.017 (2)	-0.002 (2)
C7	0.059 (3)	0.057 (3)	0.065 (3)	0.003 (3)	0.028 (3)	-0.008 (3)
C8	0.145 (6)	0.096 (5)	0.087 (5)	0.033 (5)	0.068 (4)	0.017 (4)
C9	0.044 (3)	0.060 (3)	0.059 (3)	-0.012 (2)	0.021 (2)	-0.012 (3)
C10	0.041 (3)	0.103 (5)	0.080 (4)	-0.006 (3)	0.022 (3)	-0.016 (4)
C11	0.046 (3)	0.052 (3)	0.045 (3)	0.003 (2)	0.007 (2)	-0.009 (2)
C12	0.068 (3)	0.075 (4)	0.062 (3)	-0.022 (3)	0.003 (3)	-0.018 (3)
C13	0.054 (3)	0.046 (3)	0.047 (3)	0.006 (2)	0.016 (2)	0.006 (3)
C14	0.062 (3)	0.067 (4)	0.070 (3)	0.014 (3)	0.031 (3)	-0.008 (3)
C15	0.037 (2)	0.045 (3)	0.043 (2)	0.007 (2)	0.0136 (19)	-0.005 (2)
C16	0.034 (2)	0.066 (3)	0.045 (3)	0.009 (2)	0.010 (2)	-0.011 (2)

Geometric parameters (Å, °)

O1W—H10	0.868 (10)	C1—C2	1.516 (6)
O1W—H20	0.867 (8)	C1—H1B	0.9800
S1—C15	1.669 (5)	C2—C3	1.530 (5)
S2—C16	1.684 (5)	C2—H2B	0.9800
O1—C1	1.430 (5)	C3—C4	1.501 (6)
O1—C5	1.434 (5)	С3—Н3В	0.9800
O2—C7	1.324 (6)	C4—C5	1.528 (6)
O2—C6	1.439 (6)	C4—H4A	0.9800
O3—C7	1.196 (6)	C5—C6	1.503 (6)
O4—C9	1.345 (6)	C5—H5A	0.9800
O4—C4	1.439 (5)	С6—Н6А	0.9700
О5—С9	1.200 (6)	С6—Н6В	0.9700
O6—C11	1.342 (5)	С7—С8	1.501 (9)
O6—C3	1.435 (5)	C8—H8A	0.9600
O7—C11	1.192 (6)	C8—H8B	0.9600
O8—C13	1.338 (6)	C8—H8C	0.9600
O8—C2	1.430 (5)	C9—C10	1.500 (7)
O9—C13	1.195 (6)	C10—H10A	0.9600
N1—C15	1.335 (5)	C10—H10B	0.9600
N1—C1	1.440 (5)	C10—H10C	0.9600
N1—H1A	0.8600	C11—C12	1.496 (8)
N2—C15	1.349 (5)	C12—H12A	0.9600
N2—N3	1.382 (5)	C12—H12B	0.9600
N2—H2A	0.8600	C12—H12C	0.9600
N3—C16	1.358 (6)	C13—C14	1.471 (7)
N3—H3A	0.8600	C14—H14A	0.9600
N4—C16	1.312 (7)	C14—H14B	0.9600
N4—H4B	0.8600	C14—H14C	0.9600
N4—H4C	0.8600		
H10—O1W—H20	104.6 (8)	O2—C6—C5	110.3 (4)
C1—O1—C5	112.1 (3)	O2—C6—H6A	109.6
C7—O2—C6	116.6 (4)	С5—С6—Н6А	109.6
C9—O4—C4	117.9 (4)	O2—C6—H6B	109.6

C11—O6—C3	117.9 (3)	С5—С6—Н6В	109.6
C13—O8—C2	119.8 (3)	H6A—C6—H6B	108.1
C15—N1—C1	125.6 (4)	O3—C7—O2	123.8 (5)
C15—N1—H1A	117.2	O3—C7—C8	124.9 (5)
C1—N1—H1A	117.2	O2—C7—C8	111.3 (5)
C15—N2—N3	123.2 (4)	С7—С8—Н8А	109.5
C15—N2—H2A	118.4	С7—С8—Н8В	109.5
N3—N2—H2A	118.4	H8A—C8—H8B	109.5
C16—N3—N2	121.9 (4)	С7—С8—Н8С	109.5
C16—N3—H3A	119.0	H8A—C8—H8C	109.5
N2—N3—H3A	119.0	H8B—C8—H8C	109.5
C16—N4—H4B	120.0	O5—C9—O4	123.2 (5)
C16—N4—H4C	120.0	O5—C9—C10	125.6 (5)
H4B—N4—H4C	120.0	O4—C9—C10	111.2 (5)
01—C1—N1	106.4 (3)	C9—C10—H10A	109.5
O1—C1—C2	111.5 (3)	C9—C10—H10B	109.5
N1—C1—C2	110.1 (4)	H10A—C10—H10B	109.5
O1—C1—H1B	109.6	C9—C10—H10C	109.5
N1—C1—H1B	109.6	H10A-C10-H10C	109.5
C2—C1—H1B	109.6	H10B-C10-H10C	109.5
O8—C2—C1	107.6 (3)	O7—C11—O6	124.5 (4)
O8—C2—C3	107.9 (3)	O7—C11—C12	124.8 (5)
C1—C2—C3	112.2 (3)	O6—C11—C12	110.7 (4)
O8—C2—H2B	109.7	C11—C12—H12A	109.5
C1—C2—H2B	109.7	C11—C12—H12B	109.5
C3—C2—H2B	109.7	H12A—C12—H12B	109.5
O6—C3—C4	108.4 (3)	C11—C12—H12C	109.5
O6—C3—C2	109.1 (3)	H12A—C12—H12C	109.5
C4—C3—C2	109.1 (3)	H12B—C12—H12C	109.5
O6—C3—H3B	110.1	O9—C13—O8	122.9 (4)
С4—С3—Н3В	110.1	O9—C13—C14	125.8 (5)
С2—С3—Н3В	110.1	O8—C13—C14	111.4 (4)
O4—C4—C3	108.7 (3)	C13—C14—H14A	109.5
O4—C4—C5	110.3 (3)	C13—C14—H14B	109.5
C3—C4—C5	109.0 (3)	H14A—C14—H14B	109.5
O4—C4—H4A	109.7	C13—C14—H14C	109.5
C3—C4—H4A	109.7	H14A—C14—H14C	109.5
С5—С4—Н4А	109.7	H14B—C14—H14C	109.5
O1—C5—C6	108.5 (3)	N1—C15—N2	114.9 (4)
O1—C5—C4	106.8 (3)	N1—C15—S1	125.8 (3)
C6—C5—C4	115.2 (4)	N2—C15—S1	119.3 (3)
O1—C5—H5A	108.7	N4—C16—N3	117.6 (5)
С6—С5—Н5А	108.7	N4—C16—S2	124.1 (4)
C4—C5—H5A	108.7	N3—C16—S2	118.2 (4)
C15—N2—N3—C16	-107.9(5)	C1	-1694(3)
$C_{5} = 01 = C_{1} = N_{1}$	-178 7 (3)	C1 - 01 - C5 - C4	65 9 (4)
$C_{5} = 01 = C_{1} = C_{2}$	-58 6 (4)	04-C4-C5-01	175 5 (3)
C_{15} N_{1} C_{1} C_{1} C_{1}	-116 8 (4)	C_{3} C_{4} C_{5} O_{1}	-653(4)
C_{15} N1- C_{1} - C_{2}	122.3 (5)	04-C4-C5-C6	549(5)
010 111 01 02	122.3 (3)		51.7 (5)

C13—O8—C2—C1	103.9 (4)	C3—C4—C5—C6	174.1 (4)
C13—O8—C2—C3	-134.9 (4)	C7—O2—C6—C5	-125.6 (4)
O1—C1—C2—O8	168.0 (3)	O1—C5—C6—O2	-64.5 (4)
N1—C1—C2—O8	-74.2 (4)	C4—C5—C6—O2	55.1 (5)
O1—C1—C2—C3	49.5 (4)	C6—O2—C7—O3	0.8 (7)
N1—C1—C2—C3	167.3 (3)	C6—O2—C7—C8	-178.4 (5)
C11—O6—C3—C4	129.2 (4)	C4—O4—C9—O5	2.9 (7)
C11—O6—C3—C2	-112.1 (4)	C4—O4—C9—C10	-176.6 (4)
O8—C2—C3—O6	73.5 (4)	C3—O6—C11—O7	7.1 (7)
C1—C2—C3—O6	-168.1 (3)	C3-06-C11-C12	-173.9 (4)
O8—C2—C3—C4	-168.2 (3)	C2-08-C13-09	3.6 (7)
C1—C2—C3—C4	-49.9 (4)	C2	-175.8 (4)
C9—O4—C4—C3	115.1 (4)	C1—N1—C15—N2	176.3 (4)
C9—O4—C4—C5	-125.6 (4)	C1—N1—C15—S1	-5.0 (7)
O6—C3—C4—O4	-63.5 (4)	N3—N2—C15—N1	8.6 (6)
C2—C3—C4—O4	177.8 (3)	N3—N2—C15—S1	-170.2 (3)
O6—C3—C4—C5	176.4 (3)	N2—N3—C16—N4	12.4 (7)
C2—C3—C4—C5	57.7 (4)	N2—N3—C16—S2	-166.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
O1W—H10…O5 ⁱ	0.868 (10)	2.637 (4)	3.382 (11)	144.5 (5)
O1W—H20···O9 ⁱⁱ	0.867 (8)	2.563 (4)	3.181 (9)	129.1 (5)
N1—H1A····S2 ⁱⁱⁱ	0.86	2.62	3.400 (4)	151
N2—H2A···O3 ^{iv}	0.86	2.09	2.856 (5)	147
N3—H3A···O1W ^v	0.86	2.13	2.973 (9)	167
N4—H4B…O1W ^{vi}	0.86	2.43	3.244 (9)	159
N4—H4C…O1 ⁱⁱⁱ	0.86	2.49	3.323 (5)	164

Symmetry codes: (i) *x*-1/2, *y*-1/2, *z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, *y*, -*z*+1; (iv) *x*+1/2, *y*-1/2, *z*; (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*+1, *z*.

Fig. 1

